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1. SUMMARY 

1.1 My name is Graham David Fenwick. I am a biologist with over 40 

years’ experience as a practicing researcher. My academic 

qualifications are a BSc, MSc and PhD, all in aquatic ecology, and a 

post-graduate Diploma of Business Administration. I have worked 

for NIWA as a scientist for 19 years (since 1998) and as a 

biodiversity scientist involved in environmental investigations since 

1974. My specialist areas are aquatic invertebrate biodiversity and 

the ecology of aquatic sediments. A full list of my qualifications and 

experience is in Attachment A of my evidence. 

1.2 I have been asked to provide evidence for the following specific 

matters/areas/schedules: 

Background on groundwater and groundwater ecosystems. 

National directives for protecting groundwater ecosystems. 

Wellington Regional Council’s approach 

1.3 The scope of my evidence included providing my expert opinion on 

submissions relating to groundwater quality in the Proposed Natural 

Resources Plan for the Wellington Region (pNRP). My assessments 

involved considering each point raised, evidence presented and 

available via a desktop search and developing an expert opinion of 

the submitters’ arguments. 

1.4 I conclude that Wellington Regional Council’s approach to managing 

groundwater quality in its proposed Natural Resources Plan (pNRP) 

is appropriate, given available science information. 
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2. INTRODUCTION 

2.1 My name is Graham David Fenwick. I am a biologist with over 40 

years’ experience as a practicing researcher. My academic 

qualifications are a BSc, MSc and PhD, all in aquatic ecology, and a 

post-graduate Diploma of Business Administration. I have worked 

for NIWA as a scientist for 19 years (since 1998) and latterly in the 

role of Assistant Regional Manager, Christchurch. I have also 

worked as a biodiversity scientist involved in environmental 

investigations for Memorial University of Newfoundland (Canada), 

the Australian Museum (Sydney), and the University of Canterbury. 

My specialist areas are aquatic invertebrate biodiversity and the 

ecology of aquatic sediments. A full list of my qualifications and 

experience is in Attachment A to my evidence. 

2.2 I have been engaged by Wellington Regional Council to provide 

evidence relating to Objective 25, Table 3.6 for Water Quality. My 

evidence relates to groundwater biodiversity and the effects of water 

quality on this 

2.3 The penultimate draft of my evidence was peer-reviewed by Dr 

Michelle Greenwood, Freshwater Ecologist, and Dr Scott Larned, 

Research Manager – Freshwater, both at NIWA. 

3. CODE OF CONDUCT 

3.1 I have read the Environment Court of New Zealand Practice Note 

2014 and have prepared this evidence in accordance with it. My 

evidence in this statement is within my area of expertise. I have not 

omitted to consider all material facts known to me that might alter or 

detract from the opinions which I express. I have qualified my 

opinions wherever I consider there is uncertainty. 

4. SCOPE 

4.1 I have been asked to provide evidence on the following specific 

matters: 

(a) Technical background on groundwater, 

(b) National directives for protecting groundwater ecosystems, 

(c) Evaluating Wellington Regional Council’s approach and 
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making recommendations to amend, delete or add areas to 

the schedules in the Proposed Natural Resources Plan 

(pNRP); and 

(d) Assessing submissions received on Objective O25, Table 3.6. 

5. TECHNICAL BACKGROUND ON GROUNDWATER 

Definition of groundwater 

5.1 Groundwater is all water that occurs below the ground surface for 

either brief times or longer durations (Fenwick 2016). Groundwater 

can occur in the pore spaces between the grains of unconsolidated 

sediments, such as sand or gravel. Groundwater also occurs in the 

fractures of consolidated rock. Geological formations (e.g., 

sedimentary deposits, fractured bedrock, eroded limestone) that 

hold or transmit groundwater are termed aquifers. For the purposes 

of this evidence, groundwater is all water within an aquifer. 

5.2 Groundwater originates from the passage of surface water into 

aquifers, a process referred to as recharge. A significant fraction of 

groundwater is recharged from rainfall that seeps through soil into 

aquifers. Another significant fraction of groundwater is recharged 

from rivers, where river water seeps through the river bed into an 

underlying aquifer. Groundwater can also be recharged during 

irrigation or other agricultural or industrial land-use practices.  

5.3 Groundwater within the saturated zone (part of an aquifer filled with 

water) flows through small or large spaces (interstices, pores, 

cracks, cavities, etc., <1 mm to >100 mm) from higher to lower 

elevations and pressures (i.e., along hydrostatic gradients). In 

some cases, groundwater may be trapped in an aquifer and remain 

underground indefinitely. 

5.4 The process by which water from an aquifer enters or becomes a 

surface water body is known as groundwater discharge. Human 

extraction of groundwater from aquifers, for example for irrigation or 

water supply, is also a form of discharge that is often termed 

abstraction. 

Groundwater attributes 

5.5 Groundwater and surface water are best regarded as dynamically 
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interconnected parts of a single water resource, but interactions 

between the two vary widely in timing, rate, volume and location, 

even within small sub-catchments (Hatton & Evans 1998, Winter et 

al. 1998).  

5.6 Groundwater can be dramatically affected by human interventions. 

For instance, groundwater or surface water abstraction can affect 

groundwater pressure gradients and alter groundwater flow rates 

and directions. Also, as in rivers, groundwater velocities decrease 

when water levels are lowered.  

5.7 As water moves over the land surface and through soils and rock, 

including through an aquifer, it picks up numerous dissolved 

substances and fine particulate matter, including bacteria and other 

microscopic organisms. Although there may be some physical 

filtration and chemical transformations en route to and within an 

aquifer, most of these substances enter the groundwater.  

5.8 Thus, land-use activities can markedly change the quantities and 

types of dissolved and fine particulate matter entering groundwater, 

and these substances may have important effects on groundwater 

quality.  

5.9 Unlike surface water bodies, there are no photosynthetic plants in 

aquifers because there is no sunlight for their growth. Most life in 

aquifers, therefore, depends upon energy from surface 

environments, mostly imported as dissolved organic carbon 

(DOC). In special situations, plant roots may contribute organic 

carbon directly to groundwater. 

5.10 Oxygen is another dissolved substance important for sustaining 

healthy aquatic ecosystems in many aquifers, as well as strongly 

influencing biogeochemical processes within an aquifer. It is carried 

into an aquifer by recharge water. Without photosynthesis and direct 

mixing with air, there is little or no re-oxygenation of groundwater 

within an alluvial aquifer. Consequently, dissolved oxygen 

concentrations tend to decrease with groundwater’s time 

underground and along an aquifer’s flow path (Griebler 2001, Helton 

et al. 2012) (except in limestone (or karst) systems). Deeper 

aquifers containing older groundwater tend to have little (hypoxic) 
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or no (anoxic) dissolved oxygen. 

Groundwater biodiversity and groundwater-dependent ecosystems 

5.11 Most shallow aquifers support significant biodiversity. Bacteria, 

Fungi and Archaea (microbes) are amongst the most universal 

forms of life, and inhabit almost all aquatic habitats, including both 

oxic and anoxic aquifers.  

5.12 Aquifers throughout New Zealand, including within the Wellington 

Region, contain significant biodiversity. Research shows a high 

microbial biodiversity (>250 likely species) in New Zealand aquifers, 

including those in the Wellington Region (Van Bekkum et al. 2006, 

Sirisena 2014, Sirisena et al. 2014). 

5.13 Bacteria and other microbes in groundwater are mostly closely 

associated with biofilms, thin layers of bacteria and self-produced 

organic (polymeric) substances (Brunke & Gosner 1997) that coat 

essentially all surfaces (clay grains to boulders) within an aquifer. 

5.14 The composition of these microbial communities appears 

determined primarily by the availability of dissolved oxygen within 

the aquifer (Griebler 2001). These different microbial communities 

profoundly affect groundwater quality by transforming dissolved 

substances into different chemicals, depending on oxygen 

availability (Chapelle 2000, Griebler 2001).  

5.15 Animal life (unicellular Protozoa and multicellular metazoan 

invertebrates) also inhabits aquifers world-wide (Griebler & Lueders 

2009). Groundwater metazoans, referred to as stygofauna 

(Humphreys 2000), are invertebrates adapted to life underground 

(i.e., no body pigments, no or reduced eyes, elongated bodies, 

elongated antennae) (Gibert et al. 1994, Coineau 2000, Gibert 

2001). Small body size is another adaptation to subsurface, 

interstitial life, but some New Zealand stygofaunal 

macroinvertebrates grow to 20 mm long (Wilson & Fenwick 1999). 

5.16 New Zealand’s stygofauna is widespread and diverse. Exploratory 

collecting revealed stygofauna in aquifers throughout the country 

(Fenwick 2000). More than 50 species are known from one 

intensively investigated shallow alluvial aquifer (the Selwyn) in 
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Canterbury (Fenwick 2016). Several species are known from the 

Waimea aquifer near Nelson and the five known collections from the 

Wellington Region (two species, Masterton groundwater 

management zone; one species, Hutt Valley; two species, near 

Porirua) contained four species of stygofaunal amphipods. 

5.17 New Zealand’s stygofauna comprises genera and species mostly 

endemic to this country (Scarsbrook et al. 2003). It includes some 

remarkable, ancient lineages (e.g., Barnard & Barnard 1983) 

moulded by our unique geological history, similar to weta, tuatara 

and kiwi.  

5.18 Stygofauna appears restricted to oxygenated (oxic to hypoxic) 

aquifer habitats. The presence of macroinvertebrate stygofauna in 

anoxic aquifers in New Zealand is poorly known. 

5.19 Groundwater life is rarely seen because these environments are 

difficult to access and because wells or bores are usually designed 

to exclude all but water. Because groundwater biodiversity is largely 

hidden and difficult to access, there is limited understanding of the 

extent of groundwater biodiversity and its contribution to the ecology 

of fresh waters (Gibert et al. 1994). 

5.20 Despite this very incomplete knowledge, it is now well-established 

that life in an aquifer comprises a natural, functioning ecosystem, 

termed a subsurface groundwater-dependent ecosystem 

(SGDE)(DLWC 2002, Serov et al. 2012). SGDEs are communities of 

microbes and stygofauna that interact with each other and with their 

non-living environment, performing natural ecological processes in 

the absence of light.  

Groundwater ecosystem services 

5.21 As part of their natural functioning, these SGDEs modify their 

environment, providing ecosystem services that benefit the wider 

environment and humans. Biofilms within alluvial SGDEs capture 

and process dissolved and fine particulate matter (including 

bacteria), a vital part of natural bioremediation or cleansing that 

occurs in aquifers (Chapelle 2000, Handley et al. 2013, 2015, 

Wrighton et al. 2014). These biofilms utilise DOC and other 

substances, resulting in net losses of carbon from the ecosystem via 
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aerobic respiration (Williamson et al. 2012, Di Lorenzo & Galassi 

2013, Wrighton et al. 2014).  

5.22 Biofilm bacteria also transform several other substances that would 

otherwise degrade water quality (e.g., polyaromatic hydrocarbons, 

such as naphthalene, from coal, tar and incomplete combustion of 

organic matter (Madsen et al. 1991)). In particular, they also 

facilitate denitrification, the transformation of nitrate into nitrogen. 

Bacterial denitrification appears to occur principally at hypoxic to 

anoxic microsites within aerobic aquifers (e.g., Koba et al. 1997, 

Gold et al. 1998, Rivett et al. 2008), and can result in significant 

(mean 50%, range: 29-75%) nitrate attenuation within some aquifers 

(e.g., Stenger et al. 2013, Elwan et al. 2015). 

5.23 The stygofauna delivers additional ecosystem services. Stygofauna 

ingest and digest bacteria (Sinton 1984, Fenwick et al. 2004) 

keeping finer aquifer pore spaces open and water flowing through 

these pore spaces (Boulton et al. 2008).  

5.24 While grazing biofilm and moving within an aquifer, stygofauna 

mechanically tills or disturbs the aquifer particles, turning them, 

abrading adhering biofilm, reworking and repositioning finer 

particles, and probably altering sediment matrices (Fenwick et al. 

2004). This process, termed bioturbation and widely known in 

aquatic ecosystems (e.g., Mermillod-Blondin 2004, Wilkinson et al. 

2009, Kristensen et al. 2012), is akin to the role of earthworms in 

healthy soils. In groundwater, bioturbation both stimulates microbial 

activity, leading to biogeochemical transformation of contaminants, 

and reduces any clogging to facilitate water flows (bioirrigation) that 

replenish dissolved oxygen (bioaeration) (Boulton et al. 2008) and 

maintain aerobic, oxidising conditions with improved water quality. 

5.25 The overall effects of these SGDE processes, termed ecosystem 

services, include improving groundwater quality and its suitability 

for human uses, and maintaining an aquifers’ ability to conduct 

water and its yield of water for abstraction. These effects sustain 

many of the human values associated with groundwater, notably 

human health and economic values. These effects also contribute to 

the natural and human values associated with many rivers and 
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streams, which receive smaller to larger contributions from 

groundwater. 

Threats to SGDEs and groundwater values 

5.26 Surface water quality is well-known to affect aquatic ecosystem 

health (AEH), with numerous dissolved and suspended substances 

degrading AEH when beyond critical limits (shortages and over-

supplies) (e.g., Hynes 1972, Davies-Colley & Wilcock 2004). This 

applies equally to groundwater and SGDE AEH (e.g., Notenboon et 

al. 1994, Korbel et al. 2013, Korbel & Hose 2015, Espanol et al. 

2017). 

5.27 As with surface water ecosystems, there is good evidence that 

human land-use activities frequently affect SGDE health by 

changing water quality and/or groundwater hydrology (e.g., Sinton 

1984, Boulton et al. 2008, Stein et al. 2010, Hartland et al. 2011, Di 

Lorenzo & Galassi 2013, Korbel et al. 2013).  

5.28 Harmful concentrations of common freshwater pollutants are known 

for many surface water organisms and habitats, and there are 

established limits or guideline concentrations for several common 

contaminants for sustaining the ecological health of surface water 

ecosystems.  

5.29 Such limits have not been determined for SGDEs because harmful 

concentrations of common pollutants (e.g., nitrates) are unknown for 

any stygofauna world-wide and in New Zealand. One study 

indicated that stygofauna were more sensitive to some pollutants 

than their surface water equivalents (Mosslacher 2000), but robust 

evidence is largely lacking. 

5.30 Surface water ecosystem health limits, guideline or trigger 

concentrations (concentrations above which harmful effects are 

likely, and the converse for other substances, e.g., dissolved 

oxygen) are based mostly on toxicities of individual substances to 

readily accessible species, and usually include some species known 

to be more sensitive than others (e.g., Hickey 2016). They tend to 

overlook sublethal effects, some of which interfere with natural 

reproduction and other important physiological or behavioural 

processes (e.g., Hickey 2016).  
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5.31 Surface AEH guideline concentrations usually overlook any 

combined or synergistic effects of contaminants on individual 

species, although there is some recent information on the effects of 

some substances in reducing toxicity (e.g., nitrate toxicity is reduced 

in hard water or when chloride is present) (Hickey 2016). 

5.32 Guideline or trigger concentrations based on toxicities for selected 

species have unknown relationships to ecosystem health. However, 

a conservative approach dictates that ecosystem health is best 

assured by maintaining ambient contaminant concentrations well 

below known toxic concentrations, and below those known to induce 

sublethal effects on any of its species. 

5.33 Nitrate is a key contaminant of aquifers in the Wellington Region 

(e.g., Tidswell et al. 2012, Daughney & Reeves 2003). Experience 

elsewhere shows that high concentrations of nitrate can occur in 

groundwater over large areas (Hayward & Hansen 2004) and persist 

for decades (Stewart et al. 2011).  

5.34 Although there is no unequivocal evidence that nitrate is harmful to 

stygofauna and SGDEs, its widely known toxicity to surface water 

invertebrates at low concentrations (e.g., Hickey 2013b, MfE 2017) 

almost certainly means that nitrate is similarly harmful to SGDE 

health.  

5.35  The physiology of crustaceans, the dominant invertebrates in most 

SGDEs, is impaired by nitrate (and its other hypoxic states: nitrite 

and ammonia) (Alonso & Camargo 2003, 2006, Soucek & Dickinson 

2012, Hickey 2013a). Some evidence indicates that crustaceans are 

more sensitive than other invertebrate groups to nitrate, whereas 

other evidence suggests the opposite (e.g., Soucek & Dickinson 

2012). 

5.36 Reduced oxygen concentrations appear to act synergistically with 

nitrite and with ammonia (NH3) (nitrate is generally reduced to these 

substances in low oxygen environments) to affect the physiology 

crustaceans in acute, six-hour exposure (Broughton et al. in prep.). 

Thus, low dissolved oxygen concentrations in groundwater probably 

exacerbate the effect of chronic exposure to nitrite and ammonia on 

at least some stygofauna.  



Technical: Water quality 

PAGE 10 OF 28 

5.37 This information indicates the need for conservative limits for nitrate 

(and nitrite) in groundwater, as well as managing groundwater to 

sustain near-natural dissolved oxygen concentrations. 

5.38 Dissolved oxygen is essential for sustaining most stygofauna and 

aerobic SGDE health. Its concentrations differ naturally between 

aquifers, are typically moderate to low in most aquifers, and some 

groundwaters lack dissolved oxygen (i.e., are anoxic) (Rosen 2001). 

Concentrations within most shallower aquifers vary seasonally and 

spatially (e.g., Larned et al. 2015) and generally decrease along an 

aquifer’s flow-path.  

5.39  Because there is very limited re-oxygenation of water within an 

aquifer (Boulton et al. 2008), changes in groundwater velocity will 

affect ambient dissolved oxygen concentrations (Hoehn 2001).  

5.40 Water level differences or hydrostatic gradients drive velocities of 

water movement through an aquifer. Thus, reduced groundwater 

levels, caused by reduced recharge and/or groundwater abstraction, 

can result in slower replenishment and lower dissolved oxygen (and 

DOC) concentrations, potentially compromising SGDE health. 

5.41 Most groundwater is naturally low in available food (dissolved 

organic carbon (DOC)) (e.g., Coineau 2000, Poulson & Lavoie 2000, 

Williamson et al. 2012, Larned et al. 2015). Beyond some undefined 

limits, increased DOC and/or reduced oxygen availability will affect 

the ability of stygofauna to control biofilm development (Boulton et 

al. 2008). Uncontrolled growth of biofilm may clog progressively 

larger pore spaces within an aquifer, reducing water velocities and 

dissolved oxygen replenishment, at least at finer scales (Baveye et 

al. 1998, Seifert & Engesgaard 2007, Bottero et al. 2013).  

5.42 A shift towards hypoxic and anoxic conditions will change microbial 

communities (e.g., Cheung et al. 2014), favouring bacteria that use 

different metabolic pathways and produce different respiratory end-

products (i.e., from CO2 to H2S) (Chapelle 2000). Such changes 

may significantly degrade water quality, initially at smaller (<10-100 

mm) scales. Conceivably, this process, unchecked, may 

compromise the health of larger parts of a SGDE, degrade water 

quality further and reduce groundwater yield from the aquifer 
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(Boulton et al. 2008, Fenwick 2016). 

6. NATIONAL DIRECTIVES FOR PROTECTING GROUNDWATER 
ECOSYSTEMS 

6.1 New Zealand’s groundwater biodiversity has a high intrinsic value 

because of its global uniqueness and it ancient origins (e.g., 

Barnard & Barnard 1983). Although poorly known, Wellington 

Region’s groundwater biodiversity is a significant subset of this 

globally important groundwater biodiversity.  

6.2 Even though the biodiversity within New Zealand’s aquifers is poorly 

known, the New Zealand Conservation Act 1987 and the New 

Zealand Biodiversity Strategy require regional councils to ensure 

that the intrinsic and other values of all biodiversity (including that of 

“underground aquifers”) are adequately maintained and 

safeguarded for future generations (DoC 2000: 45).  

6.3 The ecosystem services delivered by groundwater biodiversity are 

integral to sustaining groundwater and surface water resources, 

cultural identities and economies at local, regional and national 

levels (e.g., Boulton et al. 2008, Fenwick 2016, Robertson et al. 

2017). 

6.4 The Resource Management Act 1991 (and amendments) requires 

regional councils to ensure the sustainability of these ecosystem 

services (safeguard “the life-supporting capacity of air, water, soil, 

and ecosystems” by “avoiding, remedying, or mitigating any adverse 

effects of activities on the environment” to ensure that the needs of 

future generations are met (NZG 1991: Section 5). 

6.5 Currently, there are no national numerical directives (defined 

concentrations) specifically for managing SGDEs for aquatic 

ecosystem health (AEH). However, the Ministry for the 

Environment’s National Policy Statement for Freshwater 

Management 2017 (MfE 2017)(and its precursor (MfE 2014) 

explicitly includes aquifers as “freshwater” (p. 4) and implicitly 

throughout the NPS-FM as “water”, “fresh water”, “freshwater 

resources”, “the resource”, “water body”, “waterway”, “freshwater 

management unit” (MfE 2017: 4, 5, 7-10). The repeated use of 

“associated ecosystem” (or similar) within Objectives A1, B1, C1 and 
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D1, and their associated policies, is a clear signal that SGDEs are 

within the scope of this policy statement, and no less important than 

surface water bodies. Certainly, there is no exclusion of aquifers, 

groundwaters or SGDEs, either explicit or implied. 

6.6 The NPS-FM Appendix 1 sets out national values and uses for 

freshwater, which explicitly includes “aquifer” as one “freshwater 

body type” (MfE 2017: 26). These compulsory national values for 

ecosystem health are: 

 The freshwater management unit supports a healthy 

ecosystem appropriate to that freshwater body type (river, lake, 

wetland, or aquifer).  

 In a healthy freshwater ecosystem ecological processes are 

maintained, there is a range and diversity of indigenous flora 

and fauna, and there is resilience to change. 

 Matters to take into account for a healthy freshwater 

ecosystem include the management of adverse effects on flora 

and fauna of contaminants, changes in freshwater chemistry, 

excessive nutrients, algal blooms, high sediment levels, high 

temperatures, low oxygen, invasive species, and changes in 

flow regime. Other matters to take into account include the 

essential habitat needs of flora and fauna and the connections 

between water bodies.  

6.7 For these reasons, I consider that SGDE biodiversity in the 

Wellington Region, and throughout New Zealand, requires specific 

protection. 

7. WELLINGTON REGIONAL COUNCIL’S APPrOACH 

7.1 Groundwater in the Wellington Region is used extensively for 

potable and stock drinking water supplies, and for irrigation and 

industrial uses. It comprises 33% of all freshwater takes for the 

Wellington Region (414 million m3/year) (Keenan et al. 2012), and 

up to 70% of the water supplied to the greater Wellington urban area 

during summer (Wellington Water 2017). Groundwater provides 

baseflow to the region’s rivers, streams and wetlands. It also 

discharges at the land surface, and into coastal waters, as natural 

springs or seeps. Protecting these groundwater-fed surface water 
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ecosystems requires careful management of the quality and quantity 

of the underlying groundwater (Tidswell et al. 2012). 

7.2 Recognising that SGDEs are vital freshwater resources with 

significant cultural, social, biodiversity and ecological values, 

SGDEs were included in the pNRP under Objective O25, Table 3.6. 

Narrative objectives were proposed for both water quality and water 

quantity to safeguard AEH of both SGDEs and ecosystems in 

connected surface waters because there are no scientifically-

derived, numerical limits, guidelines or bottom lines specifically for 

assessing and/or managing SGDE health. 

7.3 The narrative objectives for water quality refer to nitrate 

concentrations only and provide broad guidance: “not cause 

unacceptable effects” on life and ecosystems in groundwater directly 

and indirectly connected to surface water. 

8. EVALUATION OF WELLINGTON REGIONAL COUNCIL’S 
APPROACH 

Water quality: nitrate 

8.1 Nitrate is the focus for water quality to achieve Objective O25 for 

groundwater (Greenfield et al. 2014). This contaminant of 

groundwater has attracted substantial attention because it is toxic to 

several surface water organisms at low concentrations (e.g., < 6 mg 

NO3-N/L, Hickey & Martin 2009).  

8.2 There are no guideline concentrations for nitrate in New Zealand 

groundwater. However, surface water guidelines are considered 

directly relevant to protecting SGDE AEH, at least, because the 

above-ground values that they are aimed at protecting are mostly 

the same as those associated with groundwater when it arrives at 

the surface (ANZECC 2000). The earlier guideline (ANZECC 2000: 

1-2) also noted that SGDEs “should be given the highest level of 

protection” because of “their high conservation value”. 

8.3 The pNRP’s approach treats SGDEs as similarly vulnerable to 

contaminants as surface water organisms and ecosystems 

(Greenfield et al. 2014), consistent with the views of other workers 

(e.g., Tomlinson & Bouton 2010, Fenwick 2016, Robertson et al. 

2017).  
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8.4 Following this reasoning, the council’s technical report (Greenfield et 

al. 2014) recommended that “in the interim, the surface water nitrate 

chronic toxicity threshold is adopted as the closest relevant measure 

of protection”, in the absence of any national guidance and paucity 

of stygofauna-specific information. The technical report adopted the 

NPS-FM (MfE 2014, 2017) guidance concentrations for intermediate 

protection (protect 95% of aquatic species1): annual median and 95th 

percentile concentrations of ≤2.4 and ≤3.5 mg NO3-N/L, 

respectively, for managing the AEH of groundwater that is directly 

(Category A and B) and not directly connected (Category C) to 

surface water in the region (Greenfield et al. 2014). The pNRP 

neither refers to this guideline concentration, nor provides any 

numerical value. Instead, it specifies that nitrate concentrations shall 

“not cause unacceptable effects on groundwater-dependent 

ecosystems or … communities in connected water bodies” (pNRP, 

Table 3.6, p. 43). 

8.7 Two key reports provide the most recent, authoritative information 

that is relevant to nitrate effects on SGDE AEH (i.e., concentrations 

below which risks of unacceptable effects are considered low). 

These reports, the latest in a succession of critical reviews (e.g., 

Hickey 2002, 2013a,b, Hickey & Martin 2009), incorporate all of the 

relevant empirical research evidence, plus new information and 

insights. 

8.8 Both of these key documents defined guidelines for surface water 

bodies of differing conservation value or protection levels. The 

pNRP’s supporting technical report (Greenfield et al. 2014) 

recommended an intermediate level of protection2 for managing 

groundwater quality, in the absence of more specific, regionally 

relevant toxicological and biodiversity information, and as a 

compromise between the pNRP’s precautionary approach (Policy 

P3, P41) and existing nitrate concentrations in the region’s aquifers. 

8.9 The first of these key reports, the NPS-FM 20143, set national 

maximum concentrations for protecting 95% of river species at an 

                                                
1 Protect 95% of species or some growth effects on up to 5% of species. 
2 Protect 95% of species or some growth effects on up to 5% of species. 
3 There is no difference between the 2014 and 2017 versions of the NPS-FM in terms of nitrate limits for river water. The NPS-FM 2017 update 
(MfE 2017) was not available at the time that he technical report and pNRP were produced. 
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annual median concentration of 2.4 NO3-N mg/L and an annual 95th 

percentile at 3.5 NO3-N mg/L4.  

8.10 The NPS-FM (MfE 2014, 2017) also requires that water quality of a 

water body (including groundwater) is “to be maintained at its 

current level ... or improved” (MfE 2017: 5). 

8.11 The second key work (Hickey 2016), a 2016 update of the 

Australian and New Zealand guidelines for fresh and marine water 

quality (ANZECC 2000), established an intermediate protection 

guideline concentration of 2.1 mg NO3-N/L for protecting 95% of 

species inhabiting slightly to moderately disturbed surface waters.  

8.12 Neither the NPS-FM (MfE 2017) nor the pNRP considered any 

potentially differing physiological vulnerabilities of stygofauna to 

nitrate compared with surface water invertebrates (Hickey & Martin 

2009, Hickey 2013b). Nor did they consider the potential increased 

toxicity effects of nitrate under hypoxia (Camargo et al. 2005, Alonso 

& Camargo 2006, 2015). 

8.13 I consider that the pNRP’s narrative objective is appropriate in the 

interim, because it seeks to ensure that the region’s groundwater 

resources are managed sustainability in the absence of more 

specific scientific information, while accommodating existing water 

quality within the region.  

8.14 The intermediate guidance concentrations for nitrate in groundwater 

suggested in the technical report (Greenfield et al. 2014; taken from 

Hickey 2013b, adopted by MfE 2017 and very similar to Hickey 

2016) are appropriate interim guidance for sustaining SGDE AEH, 

given prevailing nitrate nitrogen concentrations (Wellington Region 

medians <0.002 mg/L to 11 mg NO3-N/L, maximum 16.0 mg NO3-

N/L (Tidswell et al. 2012)), existing land-use activities and the 

paucity of directly relevant information on the region’s SGDEs. 

8.15 A much lower concentration was recently recommended as a 

trigger5 for managing nitrate-nitrogen concentrations (0.40-0.50 

                                                
4 Hickey’s 2013b values were adopted for and identical with MfE’s 2017 National Policy Statement – Freshwater Management ecosystem health 
nitrate limits for rivers. 
5 Triggers or trigger concentrations which, if reached or exceeded, should initiate management review of available information and decisions on 
management actions.  
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mg/L) within Golden Bay’s Te Waikoropupu Springs and contributing 

aquifer (Young et al. 2017). Such a low concentration was deemed 

appropriately precautionary given the springs’ very high biodiversity, 

cultural, spiritual, economic and other values, and documented 

changes in the springs’ water quality (increase in nitrate nitrogen 

concentrations by 30-70% since 1970, reduced water clarity, 

increased pH, probable decline in dissolved oxygen concentrations 

(Young et al. 2017)).  

8.16 Also, this low trigger concentration for nitrate is consistent with the 

NPS-FM’s (MfE 2017) requirement that the water quality of a water 

body is maintained or improved. 

Water quality: other substances 

8.17 Other substances also affect the AEH of SGDEs, but their 

importances and critical concentrations for sustaining AEH are 

inadequately known, both within the region and internationally. 

Some of the more important substances are discussed briefly to 

ensure that nitrate is not perceived as the sole determinant of SGDE 

AEH.  

8.18 Concentrations of these substances are all naturally variable and 

variously affected by human activities, either directly or indirectly.  

8.19 Organic carbon, principally in dissolved form, can either stimulate or 

disrupt SGDE ecosystem functioning (e.g., Boulton et al. 2008). It is 

naturally variable and rarely monitored in groundwater.  

8.20 Dissolved oxygen concentrations in groundwater tend to reduce with 

time underground and with increased microbial activity induced by 

increased organic carbon supply. Reduced water velocities due to 

water level reductions and/or aquifer clogging also result in lower 

oxygen concentrations due to reduced rates of replenishment.  

8.21 Groundwater velocity, driven by hydrostatic gradients within an 

aquifer, determines rates of water movement in the aquifer. This is a 

major factor in replenishing organic carbon and dissolved oxygen to 

sustain AEH within groundwater (Hoehn 2001).  

8.22 Given the paucity of knowledge of the effects of nitrate, dissolved 
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oxygen, organic carbon, groundwater velocity/water level and the 

effects of interactions between these and other contaminants on 

SGDE AEH, the pNRP’s narrative guideline for water quantity (Table 

3.6) seems appropriate.  

9. RESPONSES TO SUBMISSIONS 

Federated Farmers of New Zealand S352/080 

9.1 This submitter considered that no water quality objectives, other 

than protecting against salt water intrusion, were required. 

9.2 Significant bodies of empirical research evidence make it very clear 

and widely accepted that nitrate (and nitrite) concentrations in 

groundwater should be managed for human health reasons (e.g., 

MOH 2008), as well as to protect aquatic ecosystems (e.g., Hickey 

2016). 

9.3 In my view water quality objectives for groundwater are required in 

the pNRP to facilitate managing aquatic ecosystem health.. 

Dairy New Zealand S316/033, Kaiwaiwai Dairies Ltd S119/009, New 
Zealand Fish and Game Council S308/144, Wairarapa Water Users 
Society Incorporated S124/005 

9.4 Some submitters considered that the 2008 drinking water standards 

for New Zealand (DWSNZ) Maximum Acceptable Value (MAV) 

concentrations for inorganic determinands that are potentially 

significant to human health (MOH 2008) were suitable AEH 

thresholds for SGDEs within the pNRP’s Table 3.6. Some 

submitters noted that pNRP’s objective for nitrate in groundwater 

would better addressed using the DWSNZ MAV concentration (11.3 

mg NO3-N/L (MOH 2008)).  

9.5 One submission considered that available evidence established the 

DWSNZ MAV for nitrate as “more conservative than any equivalent 

standard” (including surface water limits) for protecting SGDEs. This 

assertion appears to be based on Hickey’s (2013a) evidence for the 

Board of Inquiry into the Tukituki Catchment proposal. His 

subsequent reports (Hickey 2013b, Hickey 2016) and the NPS-FM 

(MfE 2014, 2017) superseded the conclusions presented in that 

evidence.  

9.6 I consider that use of the 2008 DWSNZ (MOH 2008) (MAV) for 
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nitrate in drinking water (11.3 mg NO3-N/L) to be inappropriate for 

ensuring SGDE AEH in the Wellington Region for the following 

reasons.  

9.7 First, the DWSNZ 2008 nitrate (and other determinand) MAVs were 

established to define limits for public (i.e., human) health protection 

(MOH 2008). Available research evidence (notably NPS-FM (MfE 

2014, 2017) and Hickey (2016) empirically demonstrate that this 

standard, designed to protect human health, is inappropriate for 

ensuring the health of aquatic ecosystems and invertebrates under 

long-term exposure.  

9.8 Second, international and New Zealand toxicological evidence (e.g., 

Kincheloe et al. 1979, ANZECC 2000, Hickey 2002, Camargo et al. 

2005, Alonso & Camargo 2006, CCME 2012, Hickey 2013b) shows 

that concentrations of nitrate nitrogen required for ensuring surface 

water AEH are substantially lower than that of the DWSNZ (i.e., 2.1 

mg NO3-N/L cf. 11.3 mg NO3-N/L)(Hickey 2016).  

Dairy New Zealand & Fonterra Co-operative Group Ltd S316/033, 
Fertilizer Association of NZ Incorporated S302/018, Horticulture NZ 
S307/020, Minister of Conservation S75/027, Royal Forest and Bird 
Society of New Zealand Inc. S353/027 

9.9 These submissions requested amendment of Objective O25 to 

replace narrative objectives for nitrate-nitrogen and groundwater 

quantity in Table 3.6 with unspecified or simpler numerical values, 

because the narrative objective was not sufficiently clear, “directive” 

or measureable. 

9.10 The pNRP narrative objective provides broad guidance in the 

absence of robust science knowledge quantifying the effects of 

nitrate specifically on stygofauna and SGDEs. The technical report 

(Greenfield et al. 2014) provides more specific, albeit tentative, 

guidance, and the pNRP’s narrative accommodates the possibility of 

implementing such guidance as soon as it becomes available. 

9.11 The narrative objective and associated technical report 

concentrations represent pragmatic interim guidance that 

acknowledges current nitrate concentrations in the region’s 

groundwater and important land use activities, yet are precautionary 

and heed the NPS-FM’s (2017) requirement for groundwater quality 
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to be maintained or improved. 

10. CONCLUSIONS 

10.1 Based on available information on its region’s SGDEs, their likely 

biodiversity and the toxicity of nitrate to aquatic organisms, I 

consider that Wellington Regional Council’s pNRP takes an 

appropriate interim approach to managing SGDE AEH, with respect 

to groundwater quality.  

10.2 The approach is also appropriate for managing threats posed to 

SGDEs by other common solutes likely to originate from land-use 

activities in the region. 

10.3 The approach is appropriate to managing groundwater quantity for 

sustaining SGDE AEH within the Wellington Region. 
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