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Date:  17/02/2025 

 

 

Approach used to estimate the load reductions to achieve the copper, zinc and E. 
coli TASs in Proposed Change 1 to the Natural Resources Plan for the Wellington 

Region 

 

This memorandum describes the approach used to: 

• Develop a baseline daily water quality model for target attribute state (TAS) sites in Whaitua Te-
Whanganui-a-Tara (TWT)1; and 

• Interrogate the eWater Source model developed for the Te Awarua-o- Porirua Whaitua 
Implementation Programme (WIP) to develop load-concentration relationships. 

The purpose of this exercise was to allow: 

1. For calculation of the load reductions required to meet the copper (Cu), zinc (Zn) and E. coli TAS 
in proposed Plan Change 1 (PC1) to the Natural Resources Plan (NRP) for the Wellington 
Region. This will provide wastewater and stormwater network operators an indication of what the 
inclusion of the term ‘commensurate load reductions’ in PC1 requires of them; and 

2. Allow for the modelled impacts of the provisions on copper and zinc loads to be assessed in 
terms of in-stream concentrations (this is yet to be conducted). 

1 Pilot study 

1.1 Potential method for developing a baseline water quality model for WTWT 

To develop a simplified probabilistic baseline water quality model for TWT, monthly river water quality 
data and daily mean flow data (measured or derived) will be sourced from Greater Wellington Regional 
Council (GWRC). Water quality data will then be partitioned into “bins”, based on river flow and 
(potentially) season at time of sampling. The =GENERATEBYBIN function in the Torlesse Environmental 
Freshwater Package (FPack) Excel Add-in will then be used to generate a synthetic record of water 
quality for every day in the available flow record. This function is based on the PointSIM approach 
developed by Aquanet Consulting Ltd (now Traverse Environmental Ltd) which has been used 
extensively in consent processes in the Manawatu-Whanganui Region.  

  

 

1 Such models have already been developed for rivers in the Te Awarua-o-Porirua Whaitua through eWater Source (Easton 
et al., 2019a) 
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For each day of the available flow record =GENERATEBYBIN would: 

1. Apply Box-cox transformations to the measured water quality data collected within the relevant 
flow bin. This would transform the non-normal water quality data into as normal a distribution as 
possible through the following equation:  

𝐵𝑜𝑥𝐶𝑜𝑥 =
𝐶𝑜𝑛𝑐𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝜆 − 1

𝜆
 

Where λ is the value between -2 and 22 where the transformation best normalises the measured 
water quality data (automatically generated by FPack as part of the =GENERATEBYBIN 
function. 

2. Generate a modelled concentration by: 
a. Randomly sampling in a normal distribution from the transformed data frequency 

described above within prescribed lower and upper bounds (which can be modified to 
calibrate the model) (i.e., sampled results are normally distributed); and 

b. Back transforming the sampled value to a concentration through the following equation  

𝐶𝑜𝑛𝑐𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 = (𝜆 × 𝐵𝑜𝑥𝐶𝑜𝑥 + 1)
1
𝜆 

A modelled daily load will then be manually calculated through: 

𝐿𝑜𝑎𝑑𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 =  𝐶𝑜𝑛𝑐𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 × 𝐹𝑙𝑜𝑤𝑑𝑎𝑖𝑙𝑦 𝑚𝑒𝑎𝑛 × 86400 

and relevant summary statistics and attribute states calculated from the resulting synthetic record using 
the various functions in FPack. 

1.2 Model performance 

To test the potential performance of the approach described above, it has been applied to water quality 
(from 153 samples) and flow data from the Waiwhetu Stream at White Lines East TAS site between 
January 2008 and October 2024 using the following flow bins3: 

• <1/2 median flow; 

• <1/2 median flow to median flow; 

• Median flow to 3 × median flow; and 

• >3 × median flow. 

Figure 1 to Figure 3 present the measured (observed) and modelled (predicted) probability distributions 
of the Cu, Zn and E. coli concentrations in the Waiwhetu Stream at the TAS site. The dotted lines 
represent the observed concentrations plus or minus the standard deviation of the observed data, as a 
measure of tolerance in variability. These figures show that the predicted Cu (Figure 1) and Zn (Figure 
2) were within the tolerance range given by the observed concentrations ± one standard deviation, 
indicating what Traverse Environmental Ltd define as an acceptable fit between observed and predicted 
concentrations. While there was also a reasonable fit between measured and modelled E. coli 

 

2 It is possible to calculate λ from a range of -5 to 5. However, this adds significant compute time compared to 2 to -2 and trial 
and error revealed little impact on model performance. 

3 These flow bins were originally selected simply to match the reporting outputs in Greer & Ausseil (2018)(i.e., the flow 
thresholds were already available). However, a review of model performance using just these four bins revealed adequate 
performance and the decision was made not to increase the number. 



 
 

3 

 

concentrations across 96% of the measured concentration range, the 94th to 98th percentile of predicted 
concentrations were outside the measured ± one standard deviation range (Figure 3). I have not 
investigated why this occurred, but it could be due to the small number of flow bins considered here, low 
replication of measured data in a certain flow bin, or simply the selection of sub-optimal values as the 
upper /lower sampling constraints described in Point 2a in Section 1 above. 

 

 

Figure 1: Probability distribution of Cu concentrations in the Waiwhetu Stream, as measured in the river (dark blue line) and 
predicted by the model (light blue line). The dotted black lines represent the measured concentrations plus or minus the standard 
deviation of the observed data, as a measure of tolerance in variability. 
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Figure 2: Probability distribution of Zn concentrations in the Waiwhetu Stream, as measured in the river (dark blue line) and 
predicted by the model (light blue line). The dotted black lines represent the measured concentrations plus or minus the standard 
deviation of the observed data, as a measure of tolerance in variability. 

 

 

Figure 3: Probability distribution of E. coli concentrations in the Waiwhetu Stream, as measured in the river (dark blue line) and 
predicted by the model (light blue line). The dotted black lines represent the measured concentrations plus or minus the standard 
deviation of the observed data, as a measure of tolerance in variability. 
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To further assess the performance of the model, the Nash-Sutcliffe Efficiency (NSE) statistic4 was 
calculated from each percentile5 (0-100) of the modelled and measured data (shown in Figure 1 to Figure 
3), and Percent bias (PBIAS) has been calculated for: 

• Each percentile of the modelled and measured data (shown in Figure 1 to Figure 3); 

• The average measured and modelled values for each month in the record; and 

• The measured and modelled values for each day for which measured data exist. 

The NSE and PBIAS is described in Easton et al. (2019a) as: 

• NSE is a measure of goodness-of-fit, where less than 0 is poor, 0 indicates an equivalent fit to 
using the mean of the observed data, and 1 is a perfect fit to observed data; and 

• PBIAS is the deviation of data being evaluated, expressed as a percentage. The optimal value 
is 0, with low-magnitude values indicating accurate model simulation. 

The calculated NSE and PBIAS statistics are presented in Table 1. Based on the guidance of Moriasi et 
al. (2007) these statistics indicate the performance of the Cu and Zn models for the Waiwhetu Stream at 
White Lines East are ‘very good’, while the performance of the E. coli model is ‘good’. 

Table 1: Model performance statistics. 

Statistic Copper Zinc E. coli 

NSE – Percentiles 
0.94 

(Very good) 
0.98 

(Very good) 
0.87 

(Very good) 

PBIAS – Percentiles 
7.33 

(Very good) 
-1.6% 

(Very good) 
15.4% 

(Very good) 

PBIAS – Monthly average concentration 
2.4% 

(Very good) 
0.5% 

(Very good) 
-22.8% 

(Very good) 

PBIAS – Daily measured concentration 
16.3% 

(Very good) 
7.4% 

(Very good) 
39.3% 
(Good) 

 

  

 

4 A high NSE calculated from measured and modelled percentile data is an expected outcome of the modelling methodology 
employed. Generally, if it is mathematically possible to normalise the input water quality data, a randomly selected output 
dataset can be generated that closely fits that normal distribution. It is not an indication that the model accurately mimics the 
full suite of environmental factors that impact water quality which is what more complex models like eWater Source attempt 
to do.  

5 The GENERATEBYBIN function does not attempt to accurately calculate water quality on a specific day, rather it attempts 
to generate a synthetic record with percentiles that closely match the measured record (as it is percentiles that dictate attribute 
state) Thus, the NSE has not been calculated based directly on the measured data and the modelled data for the days on 
which measured data exist.  
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1.3 Method for calculating load reductions required to achieve TASs 

1.3.1 Use of baseline model to directly determine load reductions 

Future water quality under different scenarios can be estimated from the synthetic daily baseline water 
quality model by manipulating the daily contaminant loads or flows and calculating the resulting change 
in contaminant concentrations. i.e.,  

𝐶𝑜𝑛𝑐𝑓𝑢𝑡𝑢𝑟𝑒 =  
𝐿𝑜𝑎𝑑𝑓𝑢𝑡𝑢𝑟𝑒

𝐹𝑙𝑜𝑤𝑓𝑢𝑟𝑡𝑢𝑟𝑒 𝑑𝑎𝑖𝑙𝑦 𝑚𝑒𝑎𝑛 × 86400
 

To demonstrate how this could be used to calculate the modelled load reductions required to achieve the 
Cu, Zn and E. coli TASs for Waiwhetu Stream, the following approaches have been tested: 

• Conservative approach – Loads were reduced uniformly by the same percentage until all 
summary statistics achieved the relevant TASs. This involved setting a load reduction factor for 
an attribute equivalent to the proportion by which the most ‘over-allocated’ modelled assessment 
statistic exceeded the relevant TASs. By doing so, it requires the other assessment statistics to 
reduce by more than what is necessary to meet the TAS. 

• Liberal approach – Loads reductions were first targeted to flow bins that had the lowest 
load:duration ratios. This meant that to achieve a median TAS, load reductions were not applied 
to the 50% of the flow duration curve where the majority of the load was discharged, except 
where a reduction was needed to achieve the 95th percentile TAS (and vice versa). This approach 
assumes that mitigations can be deployed in manner that targets treatment to specific flow 
conditions, which is unlikely.  

The 95% confidence intervals around the modelled load reductions calculated from the approaches 
described above were determined through the PERCENTILECI and PERECENTEXCEEDCI (E. coli 
only) FPack functions. Through bootstrapping of the observed data (100 iterations) these functions 
generated 95% confidence intervals around each of the baseline summary statistics used to calculate 
Cu, Zn and E. coli attribute state. The required load reductions to meet the TASs were then calculated 
with baseline state for each assessment static set at the upper and lower end of its calculated 
confidence interval (i.e., for each approach required load reductions were calculated three times for 
each attribute).  

1.3.2 Use of NIWA’s MUST tool to provide further estimates of required load reductions 

NIWA’s Metals in Urban Streams Tool (MUST) estimates concentrations of dissolved Cu and Zn in an 
urban stream based on its catchment land use and stormwater management characteristics (Gadd et al., 
2020). While this is not particularly useful for the modelling exercise being tested here, within its code 
(available on GITHub) MUST contains generalised national estimates of the relationship between Cu and 
Zn yields and instream median and 95th percentile concentrations. These relationships are based on 
modelled yields and measured water quality data for/from 56 regional council monitoring sites. Thus, they 
can provide an insight into how a given load reduction is likely to affect copper and zinc attribute state 
when applied across flows in a manner that potentially reflects real world conditions better than the 
approaches described in Section 1.3.1. To achieve this, the MUST yield-concentration relationships for 
Cu and Zn were used in two ways:  

  



 
 

7 

 

• MUST Approach 1: Cu and Zn yields for the Waiwhetu catchment were obtained from the 
Contaminant Load Model (CLM) developed during the TWT biophysical science process. Median 
and 95th percentile concentrations were then calculated from the MUST yield-concentration 
relationships. The resulting concentrations did not closely match modelled (see Section 1.2 
above) or measured values. Thus, an alternative TAS for each summary statistic was calculated 
based on the proportional difference between modelled current concentrations and the TAS. 
Yields were then incrementally reduced until the alternative TASs for both the median and 95th 
percentile concentration were achieved. The difference between the final yield and the CLM yield 
was then recorded as the required load reduction.  

• MUST Approach 2: Cu and Zn yields for the Waiwhetu catchment were calculated from the 
modelled median and 95th percentile concentrations and the inverse of the MUST yield-
concentration relationships. The MUST yield-concentration relationships were then used to 
calculate the extent to which those yields must reduce to achieve the TASs for the more 
restrictive (i.e., harder to meet) of the median and 95th percentile concentrations.  

The code behind MUST contains 100 different yield-concentrations for Cu and Zn median and 95th 
percentile concentrations to account for the variability and uncertainty in these relationships. Thus, the 
approaches described above generated 100 estimates of the required load reduction to achieve the Cu 
and Zn TAS. Ultimately, the required load reduction was set at the level required to achieve the TASs 
under at least 67 of the 100 MUST yield-concentration relationships (i.e., the TAS more likely to be 
achieved than not - >66% probability (Mastrandrea et al., 2010)).  

As in Section 1.3.1, 95% confidence intervals were also estimated for the required load reductions 
calculated through the MUST yield-concentration relationships: 

• For MUST Approach 1 this was achieved by calculating the load reductions required to achieve 
the proportional concentration reductions consistent with the difference between the TASs and 
the upper and lower bounds of the confidence intervals around the modelled median and 95th 
percentile Cu and Zn concentrations (see Section 1.3.1); and 

• For MUST Approach 2, this was achieved by calculating Cu and Zn yields from the upper and 
lower bounds of the confidence intervals around the modelled median and 95th percentile Cu 
and Zn concentrations (see Section 1.3.1) and then calculating the required load reductions 
based on those yields. 

1.4 Results 

Figure 4 shows the load reductions required to achieve the Cu, Zn and E. coli TASs calculated using the 
different approaches described in Section 1.3. For Cu the estimated required load reduction varied from 
59% to 89%, with the MUST approaches generating significantly higher estimates 89% than the Liberal 
(59%) or Conservative (70%) Approaches. In contrast, all four approaches generated reasonably 
consistent required Zn load reduction estimates (69% to 78%). For E. coli the estimated required load 
reduction varied between 85% (Liberal Approach) and 97% (Conservative approach). The confidence 
interval round all estimated required load reduction was small (≤2.3%).  

Overall, the results indicate that calculation of required load estimates can vary considerably depending 
on methodology, and this variability far exceeds what can be attributed to uncertainty in baseline water 
quality . Thus, going forward it would make sense to continue to use multiple methods (i.e., a multiple 
lines of evidence approach) and present results as a range rather than adopting a single approach and 
describing uncertainty simply in terms of confidence intervals.  
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1.5 Summary: 

The results presented in this section of this memorandum indicates that developing baseline probabilistic 
water quality models for TAS sites in TWT is feasible and can be used to develop estimates of the load 
reductions required to achieve the Cu, Zn and E. coli TASs. However, required load estimates can vary 
considerably depending on calculation methodology and it is recommended that multiple methods be 
used for this purpose (multiple lines of evidence approach) and that results are presented as a range 
rather than adopting a single approach and describing uncertainty simply in terms of confidence intervals. 
While not explored in this memorandum, the methods described here should also be able to be used to 
describe future water quality under the PC1 provisions when paired with the CLM outputs being 
generated by Collaborations.  

 

 

Figure 4: Required load reduction estimates (±C.I.) for the achievement in of the Cu, Zn and E. coli TASs for the Waiwhetu Stream 
calculated using four different methods. 
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2 Full implementation of pilot for use in PC1 evidence 

2.1 Method 

The methods used for the modelling conducted to inform the evidence of PC1 was the same as described 
above in Section 1, with the exception of the variations set out in Sections 2.1.1 to 2.1.3 below. 

2.1.1 Updates to TWT baseline model 

The only change made to the model between the pilot described in Section 1 and full implementation 
was: 

• The conservative approach became a new liberal approach; 

• The previous liberal approach was reversed to become a new conservative approach. I.e., Load 
reductions were first targeted to flow bins that had the highest load:duration ratios. This approach 
assumes that mitigations cannot be deployed in manner that targets treatment to specific flow 
conditions; and 

• 95% confidence intervals were not calculated around the modelled load reductions as the pilot 
demonstrated that bootstrapping was too compute intensive to implement at scale and yielded 
little additional information around uncertainty (see Section 1.4). 

2.1.2 Additional approach for sites in the TAoP Whaitua 

To understand the load reductions required to achieve the Cu, Zn and E. coli TASs for rivers in the TAoP 
Whaitua the results of the eWater Source modelling conducted for the Porirua Whaitua were interrogated 
to develop log-normal relationships between contaminant loads and contaminant concentrations. I.e.: 

𝐿𝑜𝑎𝑑 = 𝛼 × ln(𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛) + 𝛽 

For Cu and Zn log-normal relationships were established between: 

• Modelled median concentrations and modelled annual loads; and 

• Modelled 95th percentile concentrations and modelled annual loads. 

For E. coli log-normal relationships were established between 

• Modelled median concentrations and modelled annual loads; 

• Modelled 95th percentile concentrations and modelled annual loads; 

• Modelled percent exceedance of 260 CFU/100mL and modelled annual loads; and 

• Modelled percent exceedance of 540 CFU/100mL and modelled annual loads. 

Each of the above relationships were calculated from four datapoints; one for each scenario run through 
the eWater Source model (see Easton et al., (2019b)): 

• Baseline 2004 – 2014; 

• Business as usual; 

• Improved; and 

• Water Sensitive. 



 
 

10 

 

Once established, the coefficients(𝛼) and constants (β) of these relationships were used calculate the 
load at which the TASs for each assessment statistic of an attribute was met (i.e., for Cu and Zn two load 
reductions were generated, while for E. coli four were generated). i.e.,  

𝑇𝑎𝑟𝑔𝑒𝑡 𝑙𝑜𝑎𝑑 = 𝛼 × ln(𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛) + 𝛽 

For each attribute the minimum of the resulting loads was compared to the modelled baseline load 
(Easton et al., 2019b) to calculate the percent reduction required to achieve the TAS. A visual 
representation of this approach is show below in Figure 5: 

 

 

Figure 5: Visual demonstration of how load reductions have been calculated for sites in the TAoP Whaitua. The light and dark blue 
dots respectively depict modelled median and 95th percentile concentrations against the loads modelled under different scenarios 
by Easton et al. (2019b). The associated regression lines (and their equations) depict the calculated log-normal relationships 
between those modelled concentrations and loads, while the light and dark blue boxes show the target concentrations and back-
calculated loads for each static. As the calculated load is lower for the 95th percentile concentration it has been selected as the 
target load (red arrow). 

 

2.1.3 Additional target thresholds 

Unlike during the pilot the required load reduction was assessed for two separate target thresholds: 

• The PC1 river Cu, Zn and E. coli targets; and 

• The minimum improvement required for Cu, Zn and E. coli by the NPS-FM 2020. Specifically: 
o Maintenance of baseline Cu and Zn concentrations (i.e., no load reduction); and 
o A one-attribute estate improvement in E. coli as required by Clause 3.11(3) of the NPS-

FM 2020. 
This second lot of targets was added upon GWRC’s request. 
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2.2 Model performance 

The following model performance statics for each site in TWT are set out below in Table 2: 

• The NSE for each percentile of the modelled and measured data; 

• The PBIAS for the average measured and modelled values for each month in the record; and 

• The PBIAS measured and modelled values for each day for which measured data exist. 

With the exception of the NSE statistic for E. coli percentile at the Karori S. @ Mākara Peak site, all 
performance statistics were at least ‘satisfactory’ (Table 2). The unsatisfactory performance for E. coli in 
the Mākara Stream was the result of a single outlier value, in the absence of which model performance 
would be assessed as very good (Table 2). However, as this outlier only impacted the highest <1% of 
modelled results (>10,000 CFU/100mL – See Figure 6) the decision was made not to remove it from the 
training dataset for this site. 

 

Table 2: Model performance statistics. Blue cells reflect very good performance, green cells reflect good performance, orange 
cells reflect satisfactory performance, and red cells reflect unsatisfactory performance (based on the guidance of Moriasi et al. 
(2007)) 

Part-FMU TAS site Statistic E.coli Cu Zn 

Kaiwharawhara Stream 
Kaiwharawhara 

S. @ Ngaio 
Gorge 

NSE percentiles 0.97 0.91 0.96 

PBIAS monthly average 13.55 5.59 2.31 

PBIAS whole record 13.07 5.18 -3.23 

Waiwhetū Stream 
Waiwhetū S. @ 
Whites Line E. 

NSE percentiles 0.65 0.95 0.99 

PBIAS monthly average -12.35 -4.96 7.39 

PBIAS whole record 13.31 -0.52 -6.24 

Wellington urban 
Karori S. @ 

Mākara Peak 

NSE percentiles 0.44 0.72 0.97 

PBIAS monthly average 10.96 18.55 2.72 

PBIAS whole record 19.46 21.94 1.97 

Wellington urban 
Karori S. @ 

Mākara Peak 
(no outliers) 

NSE percentiles 0.84 

N/A PBIAS monthly average -8.96 

PBIAS whole record 1.20 

Te Awa Kairangi rural streams 
and rural mainstems 

Mangaroa R. @ 
Te Marua 

NSE percentiles 0.68 

N/A 

PBIAS monthly average 38.03 

PBIAS whole record 37.02 

Wainuiomata rural streams 
Wainuiomata R. 
DS of White Br. 

NSE percentiles 0.63 

PBIAS monthly average 47.79 

PBIAS whole record 41.21 

Wainuiomata urban streams 
Black Ck @ 

Rowe Parade 
end 

NSE percentiles 0.58 0.93 0.96 

PBIAS monthly average 18.48 0.88 4.25 

PBIAS whole record -10.15 0.32 -6.22 

Te Awa Kairangi lower 
mainstem 

Hutt R. @ 
Boulcott 

NSE percentiles 0.78 

N/A PBIAS monthly average 28.44 

PBIAS whole record 7.58 

Te Awa Kairangi urban 
streams 

Hulls Ck adj. 
Reynolds Bach 

Dr. 

NSE percentiles 0.71 0.99 0.98 

PBIAS monthly average 36.70 3.76 8.16 

PBIAS whole record 19.48 -4.84 7.22 
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Figure 6: Probability distribution of E. coli concentrations in the Karori Stream, as measured in the river (dark blue line) and 
predicted by the model (light blue line), demonstrating a good fit for all but the top 1% of the distribution. 

 

Note: Baseline model performance statistics for sites in the TAoP Whaitua are presented in Easton et al. 
(2019b, 2019a). 

2.3 Results 

The estimated load reductions required to achieve: 

• The PC1 Cu, Zn and E. coli TASs; and 
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Table 3: Estimated load reductions required to achieve Cu, Zn and E. coli targets in rivers in the TWT and TAoP Whaitua. 

Whaitua Part-FMU TAS site Attribute 
Baseline 

state 
Current 

state 

Achieve TAS 

Minimum required 
by national 
direction 

State 
Load 

reduction State 
Load 

reduction 

TWT 

Kaiwharawhara 
Stream 

Kaiwharawhara 
S. @ Ngaio 

Gorge 

Copper C B 
53% 

(38% - 68%) 
C 

0% 

Zinc B A 
76% 

(62% - 89%) 
B 

E. coli E C 
89% 

(84% - 94%) 
D 

79% 
(64% - 93%) 

Wellington 
urban 

Karori S. @ 
Mākara Peak 

Copper D 

C 

4% 
(0% - 9%) 

D 

0% 

Zinc D C 
8% 

(7% - 10%) 
D 

E. coli E C 
96% 

(93% - 99%) 
D 

92% 
(85% - 95%) 

Waiwhetū 
Stream 

Waiwhetū S. @ 
Whites Line E. 

Copper C A 
80% 

(67% - 93%) 
C 

0% 

Zinc D B 
76% 

(71% - 80%) 
D 

E. coli E C 
90% 

(82% - 98%) 
D 

80% 
(61% - 98%) 

Te Awa 
Kairangi urban 

streams 

Hulls Ck adj. 
Reynolds Bach 

Dr. 

Copper 

C B 

69% 
(53% - 84%) 

C 0% 

Zinc 
40% 

(35% - 45%) 

E. coli E C 
91% 

(86% - 95%) 
D 

85% 
(73% - 98%) 

Wainuiomata 
urban streams 

Black Ck @ 
Rowe Parade 

end 

Copper C 
C 0% 

C 
0% 

Zinc D D 

E. coli E C 
91% 

(84% - 99%) 
D 

80% 
(62% - 99%) 

Wainuiomata 
rural streams 

Wainuiomata R. 
DS of White Br. 

Copper 
? 

A 

0% ? 0% 
Zinc 

E. coli B D 
18% 

(6% - 30%) 
A 

18% 
(6% - 30%) 

Te Awa 
Kairangi rural 
streams and 

rural mainstems 

Mangaroa R. @ 
Te Marua 

Copper 
? 0% ? 0% 

Zinc 

E. coli D E B 
61% 

(38% - 83%) 
C 

53% 
(38% - 67%) 

Te Awa 
Kairangi lower 

mainstem 

Hutt R. @ 
Boulcott 

Copper 
A 0% A 0% 

Zinc 

E. coli D C 
17% 

(0% - 33%) 
C 

17% 
(0% - 33%) 

Ōrongorongo, 
Te Awa 

Kairangi and 
Wainuiomata 
small forested 
and Te Awa 

Kairangi 
forested 

mainstems 

Whakatikei R. 
@ Riverstone 

Copper 
? 

A 

0% ? 0% 
Zinc 

E. coli A 0% A 0% 

Parangārehu 
catchment 

Mākara S. @ 
Kennels 

Copper 
? 0% ? 0% 

Zinc 
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Whaitua Part-FMU TAS site Attribute 
Baseline 

state 
Current 

state 

Achieve TAS 

Minimum required 
by national 
direction 

State 
Load 

reduction State 
Load 

reduction 

streams and 
South-west 
coast rural 
streams 

E. coli E D 
N/A 

(No wastewater infrastructure above 
TAS site) 

Korokoro 
Stream 

Korokoro S.@ 
Cornish St. Br. 

Copper 

? 

A 0% 
? 0% 

Zinc ? 0% 

E. coli B 
N/A 

(Insufficient E. coli and flow data to 
determine required load reductions) 

TAoP 

Pouewe 
Horokiri S. @ 

Snodgrass 

Copper 
A A 0% A 0% 

Zinc 

E. coli E D B 67% D 48% 

Takapū 
Pāuatahanui S. 
@ Elmwood Br. 

Copper  ? A 0% A 0% 
Zinc 

E. coli E C 59% D 15% 

Taupō 
Taupō S. @ 
Plimmerton 

Domain 

Copper 
C 

B 0% 
C 0% 

Zinc A 56% 

E. coli E E B 99% D 49% 

Te Rio o Porirua 
and Rangituhi 

Porirua S. @ 
Milk Depot 

Copper C 
C 0% 

C 
0% 

Zinc D D 

E. coli E C 92% D 60% 

Wai-o-hata1 
Duck Ck @ 

Tradewinds Dr. 
Br. 

Copper C 

? 
A 

99% C 
0% 

Zinc B 32% B 

E. coli E C 83% D 54% 

 

3 Important note on limitations 

The probabilistic modelling approach described in this memorandum is coarse and the results should be 
considered indicative of the scale of improvement required to achieve the TAS, rather than absolute 
estimates of the load reduction required. Importantly, load reductions are not targeted in a manner that 
reflects real world conditions, and any hydrological impacts (e.g., through land-cover change or 
stormwater detention) that a change in contaminant loads may generate are not considered. The results 
should not be considered comparable to the eWater Source modelling presented in Easton et al. (2019b, 
2019a), but rather as an additional tool to help inform the drafting of technical evidence for PC1. 
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